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PAbstract

Design of a restorable MPLS-based Layer-3 VPN network with QoS guarantee is a new and important subject that has
not been widely studied before. The main challenge arises from the fact that the Service Level Agreements (SLAs) of a L3-
VPN usually only specify the maximum ingress and egress traffic rate, and provide no point-to-point traffic matrix infor-
mation (i.e., a hose-model VPN). Conventional restoration and traffic engineering techniques do not apply to this type of
traffic model. In this paper, we present a restoration network architecture and present two algorithms for solving the rout-
ing problem of this type of restoration networks. We demonstrate the effectiveness of our proposed restoration architecture
by comparing the throughput performance with other approaches.
� 2007 Elsevier B.V. All rights reserved.
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R1. Introduction

1.1. MPLS-based L3-VPN

MPLS-based VPN services can help an enterprise
to converge existing disparate networks onto a con-
solidated, end-to-end infrastructure that can sup-
port combined data, voice, and video services. The
underlying concept for VPN implementation is
MPLS’s label stacking. We can use a two-layer label
stack: an external label and an internal label. The
external label is the routing label and is used by
the core router to route a packet to its destination
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edge router. The internal label is the VPN label
and it is used by the edge router to separate traffic
from different VPNs (Figs. 1 and 2).

Depending on the protocol levels involved in
constructing a VPN, we can divide VPNs into two
types: Layer-2 (L2) and Layer-3 (L3) VPNs. A L2
VPN provides a secure point-to-point transport ser-
vice. But if an enterprise needs connectivity among n

points, full connectivity among them requires
n(n � 1) L2 VPN links. It is obviously not econom-
ical unless n is small. A L3 VPN (MPLS-based), on
the other hand, is a set of sites of which the connec-
tivity is provided by a provider’s MPLS routing net-
work and there are no virtual links set up directly
among these sites. L3 VPNs provide three key ben-
efits to enterprises: any-to-any connectivity through
the use of forwarding tables, the ability to retain
.
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Fig. 1. An MPLS backbone network.
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Fig. 2. There are two labels in a VPN packet. The internal label is the VPN label, and the external label is the routing label.
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Cexisting IP addressing plan by supporting overlap-
ping IP addresses, and greater scalability at the
site-to-site and data center levels [1].

To support the QoS of a L3 VPN, customers are
required to sign a Service Level Agreement (SLA)
with the provider (Fig. 1). The SLA of a L3-VPN
usually only specifies the ingress and egress rate,
but provides no destination information. This type
of VPNs are usually called hose-model VPNs [2].
The other type of rate specification is the pipe-
model that requires the customer to specify the traf-
Please cite this article in press as: J. Chu, C.-T. Lea, A resto
Netw. (2007), doi:10.1016/j.comnet.2007.07.009
fic rate between each source-destination pair. Hose-
model VPNs obviously are much easier to use for
customers.

This paper will focus on hose-model L3 VPNs.
Conventional MPLS traffic engineering tools usu-
ally assume that traffic matrix T = {dij} of the
VPN to be set up is given, where dij represents the
average traffic intensity from node i to node j. How-
ever, as pointed above a hose-model L3-VPN does
not always provide that information. Instead, only
the row sums

P
jdij ¼ ai, where ai (the ingress band-
rable MPLS-based hose-model VPN network, Comput.



T

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

J. Chu, C.-T. Lea / Computer Networks xxx (2007) xxx–xxx 3

COMPNW 3627 No. of Pages 13, Model 3+

25 August 2007 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

width constraint) is the maximum rate of traffic that
node i can send into the network, and column sumsP

idij ¼ bj, where bj (the egress bandwidth con-
straint) is the maximum rate of traffic that node j
can receive from the network, are given. To guaran-
tee the QoS of a hose-model L3-VPN is a challeng-
ing task because for a given set of traffic constraints
ai and bi, there are many traffic matrices that can
satisfy the constraints. Therefore, we must provide
enough bandwidth for any traffic matrix that meets
the ingress and egress constraints. The uncertainty
inherited in a hose-model traffic pattern makes find-
ing efficient routing and capacity planning algo-
rithms a difficult task.

Many algorithms have been proposed for hose-
model VPN provisioning [3–6]. But there is little
work on hose-model VPN restoration. This is the
focus of the paper. When a link or node fails, tra-
versing traffic needs to be rerouted through alter-
nate paths. There are two restoration approaches:
link restoration and path restoration. In link resto-

ration (also referred to as local restoration or fast
restoration), each link of the network is protected
by a set of pre-determined detour paths that connect
the two endpoints of that link. Upon a link failure,
traffic of the link is switched to the detour protecting
paths. In path restoration, each path carrying work-
ing traffic is protected by a diverse backup path.
Link restoration can be activated immediately when
link failures are detected. In contrast, path restora-
tion can be activated only after the failure informa-
tion propagates to the source node. Link restoration
is the preferred method for providing fast restora-
tion in MPLS and optical networks [7,8] and we will
focus on link restoration in the paper.

1.2. Prior works and our contributions

There are many papers on restoration, but few
are related to hose-model traffic patterns. Ref. [9]
presented the linear programming based approaches
to solve the optimal capacity and flow assignment
problem with link and path restoration strategies.
Refs. [10,11] tackled a similar problem in mesh-
based WDM optical networks. In all these papers,
traffic matrix T is assumed given. Consequently they
do not apply to a hose-model problem. For hose-
model VPN protection, Ref. [12] proposed a resto-
ration algorithm for a single hose-model VPN con-
struction. It constructs a tree with each link
protected by a detour path. In case of a link failure,
traffic will be rerouted and the overall topology is
Please cite this article in press as: J. Chu, C.-T. Lea, A resto
Netw. (2007), doi:10.1016/j.comnet.2007.07.009
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still a tree. This is obviously not an efficient protec-
tion scheme as we need to do it for every VPN. A
recent paper [13] proposed to create a fully-con-
nected virtual topology on top of the physical topol-
ogy. It then routes packets across two-hop logical
links in the fully-connected virtual topology. Some
obvious drawbacks of the approach include longer
paths, and thus longer end-to-end delays, and low
efficiency. These problems become more severe for
networks with sparse links as creating a fully-con-
nected topology out of these networks will be more
expensive than networks with dense links.

In this paper, we propose a restorable MPLS
VPN network architecture with QoS guarantees.
Our contributions include the following:

1. We present a restorable MPLS-based network
architecture for supporting L3 VPNs with QoS
guarantees. The protection is done for all VPNs,
not just for one VPN.

2. We present an efficient decomposition algorithm
to compute the optimal routes for this restora-
tion network. This algorithm can include a hop-
count limit on the restoration paths.

3. We compare the throughput performance of the
new restoration architecture with that of conven-
tional architectures. The results show that our
proposed architecture can achieve a better per-
formance for hose-model VPNs under different
bandwidth requirements.

The rest of the paper is organized as follows. Sec-
tion 2 presents the new restorable network architec-
ture and the linear programming formulation for
designing the working and restoration paths for
the network. Section 3 presents an efficient decom-
position algorithm. Section 4 presents performance
evaluation of the proposed schemes. We conclude
our discussion in Section 5.

2. Restorable L3-VPN network with QoS guarantee

We consider single-link failures [10]. Single-node
failures can be analyzed similarly. The analysis in [5]
showed that splitting traffic among multiple paths
will have a much better performance than a single
path approach for supporting hose-model VPNs.
We will use the multi-path approach in this paper.
Multiple paths for a given source-destination pair
will be set up and load-balancing among them is
done according to a set of pre-determined splitting
ratios derived from the routing computation.
rable MPLS-based hose-model VPN network, Comput.
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Load-balancing can be done such that no out-of-
sequence transmissions occur for packets belonging
to the same flow [14].

2.1. Network architecture

Our architecture is based on the non-blocking
network approach outlined in [15]. The advantages
of this approach for restoration will be discussed
later. Let ðh~ai; h~biÞ represent the maximum amount
of total ingress and egress VPN traffic allowed to
enter and leave the network at the edge router i,
where ~ai and ~bi are given constants, describing the
degree of unevenness of amount of traffic at each
node. For example, suppose a network specifies
ð~a1 ¼ 4; ~b1 ¼ 4Þ and ð~a2 ¼ 12; ~b2 ¼ 12Þ, then it
means that the amount of traffic allowed at edge
router 2 (both ingress and egress) is three times that
of router 1. Note that only the relative – not abso-
lute – magnitudes of ~ai and ~bi have significance as
the real amount of admissible traffic is determined
by h. We need to design the network such that as
long as the ingress and egress traffic of node i is
below ðh~ai; h~biÞ, traffic routed through a link is
always below its link capacity. A network with this
property is called non-blocking in [15]. If the net-
work is non-blocking, we only need to check if there
is enough bandwidth left at the edge routers to
which endpoints of the VPN are connected. There
is no need to check the internal paths’ available
bandwidths. The decision of admitting a VPN is
greatly simplified.

2.2. Optimal routing and link restoration

Our goal is to compute the working and link-res-
toration paths to maximize the admissible amount
of traffic (i.e., h). Recall that ~ai and ~bi are given con-
stants and their values are determined from past
traffic demands (if there is no prior information
about the network, we can simply assume the
ingress–egress capacity at an edge node is propor-
tional to the total capacity of network links incident
at that node). The network is described as a directed
graph G(V,E), where V is the set of vertices (nodes)
and E is the set of links. Let Q � V be the set of edge
routers through which traffic is admitted into the
network. We first introduce the following nota-
tions:ce The capacity for link e 2 E

ve
ij The routing variable, representing the por-

tion of working traffic from node i 2 Q to
j 2 Q routed through link e.
Please cite this article in press as: J. Chu, C.-T. Lea, A resto
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A(e) the capacity on link e reserved for working
traffic. When link e fails, A(e) amount of
traffic has to be rerouted along a set of res-
toration (detour) paths that connect the
two endpoints of this link.

ye
f The amount of restoration traffic that will

be routed through link e in case link f fails.

Given the ingress and egress traffic constraints at
all the edge nodes, a traffic matrix is called valid if it
satisfies the specified traffic constraints. Let H ¼
½ð~a1; ~b1Þ; . . . ; ð~an; ~bnÞ� and eH ¼ ½ðh~a1; h~b1Þ; . . . ; ðh~an;
h~bnÞ�. Let M be the set of valid traffic matrices
T = {dij} constrained by H. If T 2M, then hT will
be a valid traffic matrix for the constraint eH . In
the following discussion, we consider T 2M and
use the form hT to indicate a valid traffic matrix
constrained by eH .

Our problem is to determine the working flow ve
ij

and the restoration flow ye
f that can maximize h. We

formulate it as the following:

max h ð1aÞ
s:t:

X
e2CþðvÞ

ve
ij�

X
e2C�ðvÞ

ve
ij¼ 0; i;j2Q; v2 V ; v 6¼ i;j

ð1bÞX
e2CþðvÞ

ve
ij�

X
e2C�ðvÞ

ve
ij¼ 1; i;j2Q; v2 V ; v¼ i

ð1cÞX
e2CþðvÞ

ve
ij�

X
e2C�ðvÞ

ve
ij¼�1; i;j2Q; v2 V ; v¼ j

ð1dÞX
i;j2Q

ve
ij � ðhdijÞ6AðeÞ; e2E; T 2M ð1eÞ

X
e2CþðvÞ

ye
f �

X
e2C�ðvÞ

ye
f ¼ 0; f ¼ðo; tÞ 2E; v 6¼ o; t

ð1fÞX
e2CþðvÞ

ye
f �

X
e2C�ðvÞ

ye
f ¼Aðf Þ; f ¼ðo; tÞ 2E; v¼ o

ð1gÞX
e2CþðvÞ

ye
f �

X
e2C�ðvÞ

ye
f ¼�Aðf Þ; f ¼ðo; tÞ 2E; v¼ t

ð1hÞ
AðeÞþ ye

f 6 ce; e;f 2E; e 6¼ f ð1iÞ
ye

e¼ 0; e2E ð1jÞ
v;y;h;A P 0 ð1kÞ

where C+(v) and C�(v) are the set of outgoing and
incoming links of node v, and o and t represent
the originating and terminating nodes of link f.
rable MPLS-based hose-model VPN network, Comput.
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Constraints (1b)–(1d) represent the flow conserva-
tion constraints for working traffic at intermediate,
source, and destination nodes and constraints (1f)–
(1h) represent the flow conservation constraints
for restoration traffic. Constraint (1e) ensures that
the total amount of working traffic on any link does
not exceed the working capacity A(e). Constraint
(1i) ensures that the sum of working traffic and
the restoration traffic that appears on a link due
to failure of any other link does not exceed the link
capacity. Constraints (1j,1k) provide the ranges for
the variables.

Constraint (1e) is not a linear constraint. But we
can introduce a new routing variable xe

ij ¼ ve
ij � h and

rewrite Eq. (1) as the following:
T
282

284284

285

286
N
C

O
R

R
E
C

max h ð2aÞ
s:t:

X
e2CþðvÞ

xe
ij�

X
e2C�ðvÞ

xe
ij¼ 0; i;j2Q; v2 V ; v 6¼ i;j

ð2bÞX
e2CþðvÞ

xe
ij�

X
e2C�ðvÞ

xe
ij¼ h; i;j2Q; v2 V ; v¼ i

ð2cÞX
e2CþðvÞ

xe
ij�

X
e2C�ðvÞ

xe
ij¼�h; i;j2Q; v2 V ; v¼ j

ð2dÞX
i;j2Q

xe
ijdij6AðeÞ; e2E; T 2M ð2eÞ

X
e2CþðvÞ

ye
f �

X
e2C�ðvÞ

ye
f ¼ 0; f ¼ðo; tÞ 2E; v 6¼ o; t

ð2fÞX
e2CþðvÞ

ye
f �

X
e2C�ðvÞ

ye
f ¼Aðf Þ; f ¼ðo; tÞ 2E; v¼ o

ð2gÞX
e2CþðvÞ

ye
f �

X
e2C�ðvÞ

ye
f ¼�Aðf Þ; f ¼ðo; tÞ 2E; v¼ t

ð2hÞ
AðeÞþ ye

f 6 ce; e;f 2E; e 6¼ f ð2iÞ
ye

e¼ 0; e2E ð2jÞ
x;y;h;A P 0 ð2kÞ
287

288

289

290

291
U

Although Eq. (2) is a linear programming formula-
tion, it cannot be solved directly because constraint
(2e) lists every valid T in M and there are too many
of them. The problem is solved with the following
property. Different forms of this property have been
given in [16,17].
Please cite this article in press as: J. Chu, C.-T. Lea, A resto
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Property 1. Given H ¼ ½ð~a1; ~b1Þ; . . . ; ð~an; ~bnÞ�, rout-

ing xe
ij and working capacity reservation A(e) can

satisfy constraint (2e) for all traffic matrices in M if

and only if there exist non-negative weights pe(i) and
ke(i) for each e 2 E and i 2 Q such that

(i)
P

i2Q~aipeðiÞ þ
P

i2Q
~bikeðiÞ 6 AðeÞ for each

e 2 E.

(ii) xe
ij 6 peðiÞ þ keðjÞ for each e 2 E and every

i, j 2 Q.
E
D

P
R

O
OProof. The proof is provided in Appendix A. h

Property 1 allows us to replace constraint (2e) in
Eq. (2) with requirements (i)–(ii) in Property 1 and
transform the formulation into the following:

max h ð3aÞ
s:t:

X
e2CþðvÞ

xe
ij�

X
e2C�ðvÞ

xe
ij¼ 0; i;j2Q; v2 V ; v 6¼ i;j

ð3bÞX
e2CþðvÞ

xe
ij�

X
e2C�ðvÞ

xe
ij¼ h; i;j2Q; v2 V ; v¼ i ð3cÞ

X
e2CþðvÞ

xe
ij�

X
e2C�ðvÞ

xe
ij¼�h; i;j2Q; v2 V ; v¼ j

ð3dÞX
i2Q

~ai �peðiÞþ
X
i2Q

~bi �keðiÞ6AðeÞ; e2E ð3eÞ

xe
ij6 peðiÞþkeðjÞ; i;j2Q; e2E ð3fÞX

e2CþðvÞ
ye

f �
X

e2C�ðvÞ
ye

f ¼ 0 f ¼ðo; tÞ 2E; v 6¼ o; t

ð3gÞX
e2CþðvÞ

ye
f �

X
e2C�ðvÞ

ye
f ¼Aðf Þ; f ¼ðo; tÞ 2E; v¼ o

ð3hÞX
e2CþðvÞ

ye
f �

X
e2C�ðvÞ

ye
f ¼�Aðf Þ; f ¼ðo; tÞ 2E; v¼ t

ð3iÞ
AðeÞþ ye

f 6 ce; e;f 2E; e 6¼ f ð3jÞ
ye

e¼ 0; e2E ð3kÞ
x;y;p;k;h;A P 0 ð3lÞ

The above linear programming (LP) problem can be
solved by standard LP solvers like Cplex [18]. Then
we can derive the set of working paths and link res-
toration paths from the flow variables xe

ij and ye
f .

3. Adding hop-count limit to restoration paths

If the goal is only to maximize network through-
put, some of the computed restoration paths may
rable MPLS-based hose-model VPN network, Comput.
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be long and this makes the restoration latency unac-
ceptable. In the following we present a decomposi-
tion scheme that will lead to a path formulation for
the design of restoration paths. The path formula-
tion allows us to add a hop count limit on the resto-
ration paths. Another benefit of the approach is that
the new approach is faster than the one in Section 2.

3.1. Two-stage decomposition algorithm

The computation of the working flow and the
restoration flow in Eq. (3) can be partitioned into
two separate stages. At the first stage, correspond-
ing to constraints (3b)–(3f), we assume the working
capacity vector K is given, where
K ¼ ½Að1Þ;Að2Þ; . . . ;AðmÞ� ð4Þ
and m is the number of links (assuming the set of
links is labeled from 1 to m). We can compute the
optimal routing. The process also generates a new
working capacity vector eK. A working capacity vec-
tor is called feasible if it satisfies constraints (3g)–
(3k), meaning that the network has enough capacity
left to protect it. At the second stage, we will test if
the newly generated eK from stage 1 is feasible or
not. If not, we will modify eK in the 2nd stage to
make it feasible and pass the result back to stage 1
for another round of iteration.

Stage 1: Assume K (i.e., all A(e)) is given. We
determine routing and maximum h by solving the
following linear programming problem.

max h ð5aÞ
s:t:

X
e2CþðvÞ

xe
ij�

X
e2C�ðvÞ

xe
ij¼ 0; i;j2Q; v2 V ; v 6¼ i;j

ð5bÞX
e2CþðvÞ

xe
ij�

X
e2C�ðvÞ

xe
ij¼ h; i;j2Q; v2 V ; v¼ i

ð5cÞX
e2CþðvÞ

xe
ij�

X
e2C�ðvÞ

xe
ij¼�h; i;j2Q; v2 V ; v¼ j

ð5dÞX
i2Q

~ai �peðiÞþ
X
i2Q

~bi �keðiÞ6AðeÞ; e2E ð5eÞ

xe
ij6 peðiÞþkeðjÞ; i;j2Q; e2E ð5fÞ

x;p;k;h P 0 ð5gÞ
We use h(K) to denote the optimal value of h in Eq.
(5) since it is a function of the working capacity vec-
tor K. Let R denote the set of feasible K. Property 2
in Appendix B shows that h(K) is a concave function
on R. This allows us to use the subgradient scheme
[19] to compute a new working capacity vector eK to
Please cite this article in press as: J. Chu, C.-T. Lea, A resto
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improve h. eK can be computed as eK  Kþ sc,
where c is a subgradient vector at point K and s is
the step size. c is called a subgradient vector of
h(K) at the point K if

hðKÞ � hðKÞ 6 c � ðK� KÞ; K 2 R ð6Þ
holds. We show how to compute c below.

Property 3. Suppose K is a working capacity vector

as defined by Eq. (4). Let K 2 R and c be a

subgradient of h(K) at K. Then

c ¼ ½�x1; �x2; . . . ; �xm�: ð7Þ

where �x are the corresponding optimal dual variables
for constraint (5e).

Proof. From the definition of subgradient, c at K
can be computed as follows. For h(K), let x be the
corresponding optimal dual variables for constraint
(5e). Then from linear programming theory,

hðKÞ � hðKÞ ¼
X

e

xeAðeÞ �
X

e

�xeAðeÞ

6

X
e

�xeAðeÞ �
X

e

�xeAðeÞ

¼
X

e

�xe½AðeÞ � AðeÞ� ð8Þ

We can rewrite Eq. (8) as hðKÞ � hðKÞ 6 ½�x1; �x2;
. . . ; �xm� � ðK� KÞ: From the definition of subgradi-
ent, we thus have c ¼ ½�x1; �x2; . . . ; �xm�. h

Stage 2: At stage 2, we check if the new working
capacity vector eK ¼ ½eAð1Þ; . . . ; eAðmÞ� produced by
stage 1 is feasible or not. If not, we will modify it
and make it feasible. This is done with the following
LP formulation.

max r ð9aÞ
s:t:

X
e2CþðvÞ

ye
f �

X
e2C�ðvÞ

ye
f ¼ 0; f ¼ðo; tÞ 2E; v 6¼ o; t

ð9bÞX
e2CþðvÞ

ye
f �

X
e2C�ðvÞ

ye
f ¼Aðf Þ; f ¼ðo; tÞ 2E; v¼ o

ð9cÞX
e2CþðvÞ

ye
f �

X
e2C�ðvÞ

ye
f ¼�Aðf Þ; f ¼ðo; tÞ 2E; v¼ t

ð9dÞ
AðeÞþ ye

f 6 ce; e;f 2E; e 6¼ f ð9eÞ
ye

e¼ 0; e2E ð9fÞ
AðeÞP eAðeÞ � r; e2E ð9gÞ
y;r;A P 0 ð9hÞ
rable MPLS-based hose-model VPN network, Comput.
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Constraints (9b)–(9e) ensure that the computed
working capacity is feasible. Constraint (9g) implies
that r ¼ minefAðeÞ=eAðeÞg. Thus, if r P 1, eK is obvi-
ously feasible and it will be put back into Eq. (5) for
the next iteration. If r < 1 (eK is not feasible), then
(reK) will be feasible and we will pass this vector
back to stage 1 for further iterations.
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3.2. Path formulation for restoration paths

The formulation in stage 2 is link based. But we
now transform it into a path-flow formulation so
that we can impose a hop-count limit on the resto-
ration paths. Also, a faster computation algorithm
is available for the new form. Let Pe denote the
set of all paths, except e, from the originating node
to the terminating node of link e. Let y(p) denote the
restoration traffic on path p if its protected link fails.
To restore the traffic for any failed link e, we must
have AðeÞ ¼

P
p2P e

yðpÞ for all e 2 E. The path-flow
formulation of Eq. (9) is as follows:

max r ð10aÞ
s:t:
X
p2P e

yðpÞP r � eAðeÞ e 2 E ð10bÞ
X
p2P e

yðpÞ þ
X

p:p2P f ;e2p

yðpÞ 6 ce f 6¼ e; e; f 2 E

ð10cÞ
y; r P 0 ð10dÞ

The above path-flow formulation can be solved effi-
ciently with a primal-dual approach adapted from
the technique developed for the maximum concur-
rent flow problem in [20]. In addition, the hop-count
limit can be easily included in the algorithm. The
dual formulation of Eq. (10) is to associate a vari-
able re, for each link e, corresponding to constraint
(10b) and a non-negative variable w(e,f), for each
pair e,f 2 E, e 5 f, corresponding to constraint
(10c). The dual formulation can be written as

min
X
e2E

ce

X
f2E;f 6¼e

wðe; f Þ ð11aÞ

s:t:
X
e02p

wðe0; eÞ þ
X

f2E;f 6¼e

wðe; f ÞP rep 2 P e; e 2 E

ð11bÞX
e

eAðeÞre P 1 ð11cÞ

If we set ze to the minimum value of the left-hand-
side (LHS) of constraint (11b), then w(e, f) will be
a dual feasible solution that satisfies constraint
Please cite this article in press as: J. Chu, C.-T. Lea, A resto
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(11b). In addition, constraint (11c) can be easily sat-
isfied if we divide all weights w(e, f) by

P
e
eAðeÞze.

The algorithm proceeds iteratively. At each itera-
tion, for each link e, the shortest path p 2 Pe that
minimizes the LHS of constraint (11b) is computed,
flow is sent on the path, and the primal and dual
variables are updated accordingly. Note that we
can impose a hop-count limit in this step when we
compute the shortest paths (e.g., we can use the
Bellman–Ford algorithm [21]). This may reduce
the working capacity a little bit (see Section 4),
but the restoration latency can be restricted by add-
ing this constraint.

4. Performance evaluation

In this section we compare the performance for
different schemes. The primary performance mea-
sure is the maximum admissible bandwidth of traffic
the network can sustain. In the following experi-
ments, we assume the preference parameters ~ai

and ~bi at edge node i is set proportional to the total
capacity of network links incident at node i. This is
a logical assumption because if there is more traffic
demand from a node, more links will be added to
that node. As we mentioned in the introduction,
most existing restoration algorithms assume the
traffic matrix is given, and they can not be applied
to problems with hose-model traffic patterns. In
the following, we only compare our scheme with
those that can be applied to hose-model traffic pat-
terns. The schemes we compare include the
following:

(a) Linear programming, no link protection

(LP_NP): the optimal scheme by solving
Eq. (5) by setting the working capacity = link
capacity (i.e., A(e) = ce for all e 2 E).

(b) Linear programming, with link protection

(LP_P): the optimal scheme by solving Eq.
(3) with standard LP solvers.

(c) Decomposition and Iterative scheme (DI): the
working and restoration flows are computed
by the decomposition algorithm discussed in
Section 3.

(d) Non-iterative scheme (NI): the working capac-
ity is computed by the link partition scheme
that will be described below.

(e) Shortest path routing and restoration (SPRR):

Use the shortest paths for the working traffic.
If multiple shortest paths exist, traffic will be
evenly split among them. SPRR also uses the
rable MPLS-based hose-model VPN network, Comput.



T
E
D

P
R

O
O

F

449

450

451

452

453

454

455

456

457

458
459

461461

462

463

464

465

466

467

468

469

470

471

472

474474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

Fig. 3. The Sprint US backbone topology used for performance
evaluation.
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shortest restoration paths to protect a link.
Once working and restoration paths are given,
we can easily compute the maximum h.

Two non-iterative schemes of (d) are described
below. Without considering what type of traffic pat-
terns to be supported in the network, we just com-
pute the amount of working capacity under the
condition that it can be protected.

Non-Iterative Scheme 1 (NI1):

max
X
e2E

X
p2P e

yðpÞ ð12aÞ

s:t:
X
p2P e

yðpÞ þ
X

p:p2P f ;e2p

yðpÞ 6 ce; f 6¼ e; e; f 2 E

ð12bÞ
y P 0 ð12cÞ

The objective function (12a) is to maximize the sum
of all links’ working capacity. Once we have y(p), we
can derive A(e). We then put A(e) back into Eq. (5)
to find the maximum h for the hose-model pattern.
This is done in one iteration.

Non-Iterative Scheme 2 (NI2):
Similar to the previous non-iterative scheme, we

compute the working capacity first. But we change
the objective function in (12a) to �r ¼ mine2Efreg,
where re is the fraction of the capacity of link e

reserved for the working traffic.

max �r ð13aÞ
s:t:
X
p2P e

yðpÞP �r � ce e 2 E ð13bÞ
X
p2P e

yðpÞ þ
X

p:p2P f ;e2p

yðpÞ 6 ce; f 6¼ e; e; f 2 E

ð13cÞ
y;�r P 0 ð13dÞ
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4.1. Speed of convergence of the decomposition

scheme

We first evaluate the effectiveness of the decom-
position algorithm with the Sprint IP backbone
topology shown in Fig. 3 [22]. We assume all nodes
are edge nodes and all links have the same capacity
of 1000 U. Although the theoretical rate of conver-
gence for basic subgradient algorithm is linear [23],
its convergence speed is much better in practice [24].
Fig. 4 shows how many iterative phases the decom-
position algorithm needs to perform before getting a
near-optimal solution. The straight line in Fig. 4
Please cite this article in press as: J. Chu, C.-T. Lea, A resto
Netw. (2007), doi:10.1016/j.comnet.2007.07.009
indicates the maximum admissible bandwidth com-
puted by the LP_P scheme. As we can see, after 10
phases, the maximum admissible bandwidth com-
puted by the decomposition scheme is very close
to the optimal value. For larger networks presented
later, we normally can get a near-optimal solution in
less than a hundred phases for the decomposition
scheme.

The number of iterative phases needed for
achieving convergence given in Fig. 4 does not
depend on the type of CPUs we use, but the real
computation time for each phase will be machine
dependent. Fig. 5 compares the running-times (in
seconds) of the two approaches on randomly gener-
ated topologies measured on a 3-GHz Pentium-4
PC with 2 GB of memory. The results clearly show
that the DI scheme is much faster than the LP_P
scheme. The running-time of the LP_P scheme
grows quickly with the size of the network. In con-
rable MPLS-based hose-model VPN network, Comput.
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trast, the running-time of the DI scheme grows in a
much slower pace.
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Fig. 7. Maximum admissible bandwidth vs. the number of nodes
in Experiment 2.
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4.2. Throughput comparison

We evaluate the throughput of LP_NP, DI, NI1,
NI2, and SPRR, based on randomly generated
topologies with the following varying parameters:
(1) number of links in the network, (2) number of
nodes in the network, and (3) number of edge
nodes.

• Experiment 1: 20 node topologies with 40–120
bidirectional links. The number of edge nodes is
set to 10.

• Experiment 2: 10–50 node topologies. The num-
ber of links is twice the number of nodes in the
topology. The number of edge nodes is set to 10.

• Experiment 3: 40 node topologies with 80 bidirec-
tional links. The number of edge nodes is varied
from 6 to 20.

The link capacity is 100 U. Figs. 6–8 are the aver-
age results of ten independent runs. LP_NP is pre-
sented only to show how much traffic we need to
sacrifice to ensure restoration. Comparing LP_NP
and DI, we find that DI reduces the admissible traf-
fic by 7.4–25.8% in Experiment 1, 11–35.1% in
Experiment 2, and 11.8–19.9% in Experiment 3.

DI performs much better than NI1 and NI2 in all
the experiments. The performance gap between DI
and NI1 (which achieves the secondary high perfor-
mance among the restoration schemes) ranges from
10.8% to 40% in Experiment 1, from 23.5% to
32.8% in Experiment 2, and from 19.8% to 33.3%
Please cite this article in press as: J. Chu, C.-T. Lea, A restorable MPLS-based hose-model VPN network, Comput.
Netw. (2007), doi:10.1016/j.comnet.2007.07.009
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in Experiment 3. The reason is because the two NI
schemes partition the link capacity without taking
in account the hose-model traffic pattern. This
results in the reduction of admissible capacity.
Among the two, NI1, which maximizes the working
capacity for the working traffic, performs better than
NI2. We also observe that SPRR performs much
worse than the other schemes. This is because SPRR
uses shortest paths for working and restoration traf-
fic. Load-balancing can not be done as efficiently as
the other schemes.
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4.3. Impact of hop-count limit on throughput

We use the Sprint backbone topology (Fig. 3) to
study the throughput degradation due to adding a
hop-count limit. Fig. 9 plots the maximum admissi-
ble bandwidth as the maximum allowable hop count
of the restoration paths. As can be seen, the maxi-
mum admissible bandwidth does not change much
beyond a hop-count of 6. The results allow us to
make an intelligent tradeoff between the throughput
and the restoration latency.
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4.4. Dynamic construction of hose-model VPNs

The performance of the proposed approach
shown in the previous sections can be further
improved as described in this section. We compare
the performance of the proposed approach with that
of the conventional approaches in a dynamic envi-
ronment where VPNs come and go. The perfor-
mance measure we use is the rejection ratio which
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Fig. 9. Maximum admissible bandwidth vs. maximum hop count
of a restoration path.
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is defined as the percentage of the total VPN
requests that is rejected.

In a dynamic VPN environment, previously pro-
posed VPN provisioning algorithms, as pointed out
in [15], have the drawback of computing working
and link-restoration paths every time a new VPN
is added. This is time consuming and can create a
scalability problem if the frequency of adding and
deleting VPNs is high. The non-blocking network
approach does not have the same problem. For
our approach, we will use one additional measure
to further improve the performance presented in
the previous sections. We use a server to record
how much bandwidth of each link has been taken
for existing VPNs. Recall that in the proposed
approach, the paths are fixed. When a new VPN
arrives, we use the formulation of Eq. (A.1) (given
in Appendix A) to find the maximum amount of
bandwidth required (i.e., the worst-case traffic pat-
tern) along the paths for this new VPN. The compu-
tation required for this is much less than finding the
optimal set of working and restoration paths of
each new VPN. The throughput presented in the
previous sections does not track this information
and only uses the information of the ingress and
egress nodes of the VPN to decide if the VPN can
be admitted.

We conduct experiments on the Sprint backbone
topology (Fig. 3). The VPN requests are generated
following a Poisson process and the holding time
is exponentially distributed. The VPN endpoints
are randomly attached to the edge nodes, and the
number of endpoints of each VPN is chosen ran-
domly between 5 and 15. The ingress and egress
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Fig. 10. The comparison of rejection ratio of the conventional
and our proposed VPN construction approaches.
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bandwidth requirement of a VPN endpoint are
assumed to be the same, and its value is chosen ran-
domly between 1 and K, where K is a selected
parameter that indicates the degree of variability
of VPN bandwidth requirements. The results are
shown in Fig. 10. As can be seen, the rejection ratios
of the two approaches are very close if K is small.
However, as K becomes larger, which implies
greater variability of the bandwidth requirements
of each VPN, our proposed approach has a better
performance than the conventional approach.

5. Conclusions

In this paper, we presented a new restoration
architecture for L3-VPN networks. We also pre-
sented a linear programming formulation for com-
puting the optimal routing and link restoration for
this architecture. Furthermore, we showed an effi-
cient decomposition algorithm that can compute a
near-optimal solution with much less computational
overhead. The proposed architecture has many
advantages, including no need to set up an external
routing table, no need to set up restoration paths for
a new VPN, and high throughput performance. The
proposed decomposition algorithm is computation
efficient and allows us to include a hop-count limit
to bound the restoration latency of the VPN in case
restoration occurs. The techniques developed in this
paper can also be applied to other restoration
networks.

Appendix A. Proof of Property 1

Property 1. Given H ¼ ½ð~a1; ~b1Þ; . . . ; ð~an; ~bnÞ�, rout-
ing xe

ij and working capacity reservation A(e) can
satisfy constraint (2e) for all traffic matrices in M if
and only if there exist non-negative weights pe(i)
and ke(i) for each e 2 E and i 2 Q such that

(i)
P

i2Q~aipeðiÞ þ
P

i2Q
~bikeðiÞ 6 AðeÞ for each

e 2 E

(ii) xe
ij 6 peðiÞ þ keðjÞ for each e 2 E and every

i,j 2 Q
679

680

681

682

683
UProof. (‘‘only if’’ direction): Let routing xe
ij and

working capacity reservation A(e) satisfy con-
straints (2e) for all traffic matrices in M (i.e.,P

ijx
e
ijdij 6 AðeÞ for all e 2 E and T 2M). Consider

a link e. The problem of finding T = {dij} that max-
imizes link load on e can be formulated as the fol-
lowing linear programming problem.
Please cite this article in press as: J. Chu, C.-T. Lea, A resto
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max
X

ij

xe
ijdij ðA:1aÞ

s:t:
X
j2Q

dij 6 ~ai; i 2 Q ðA:1bÞ
X
i2Q

dij 6
~bj; j 2 Q ðA:1cÞ

dij P 0; i; j 2 Q ðA:1dÞ

where constraints (A.1b) and (A.1c) are the ingress
and egress bandwidth constraints. The dual of the
above LP problem for link e is:

min
X

i

~aipeðiÞ þ
X

i

~bikeðiÞ ðA:2aÞ

s:t: peðiÞ þ keðjÞP xe
ij; i; j 2 Q ðA:2bÞ

p; k P 0 ðA:2cÞ

Since
P

ijx
e
ijdij 6 AðeÞ, the dual for any link e must

have optimal value 6A(e). Therefore, the objective
function of the dual satisfies (i). Requirement (ii)
is trivially satisfied by the dual problem constraint
(A.2b).

(‘‘if’’ direction): Let xe
ij be a routing, and T = {dij}

be any valid traffic matrix. Also let pe(i) and ke(i) be
the weights satisfying requirements (i)-(ii). Consider
a link e. From (ii), we have

xe
ij 6 peðiÞ þ keðjÞ

Summing over all node pairs (i, j), we haveX
i;j2Q

xe
ijdij 6

X
i;j2Q

½peðiÞ þ keðjÞ�dij

¼
X
i2Q

peðiÞ
X
j2Q

dij þ
X
j2Q

keðjÞ
X
i2Q

dij

6

X
i2Q

~aipeðiÞ þ
X
i2Q

~bikeðiÞ

The last inequality comes from the constraints im-
posed by H (i.e.,

P
jdij 6 ~ai and

P
idij 6

~bj). From
(i), we haveX
i;j2Q

xe
ijdij 6

X
i2Q

~aipeðiÞ þ
X
i2Q

~bikeðiÞ 6 AðeÞ

This means that for any traffic matrix constrained
by H, the working traffic on any link is at most
A(e). h
Appendix B. Concavity of h(K)

Property 2. Let R denote the set of feasible K. Then
h(K) is a concave function on R.
rable MPLS-based hose-model VPN network, Comput.
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Proof. The property can be proven from the dual
form of Eq. (5).

Dual Problem of Eq. (5):

min
X
e2E

xeAðeÞ ðB:1aÞ

s:t: ru
ij � rv

ij þ le
ij P 0; i; j 2 Q; e ¼ ðu; vÞ 2 E

ðB:1bÞX
i;j2Q

rj
ij P 1 ðB:1cÞ

ri
ij ¼ 0; i; j 2 Q ðB:1dÞ

~aixe �
X
j2Q

le
ij P 0; i 2 Q; e 2 E ðB:1eÞ

~bjxe �
X
i2Q

le
ij P 0; j 2 Q; e 2 E ðB:1fÞ

x; l; r P 0 ðB:1gÞ

Let eK;K 2 R, and q be in the range 0 6 q 6 1. Let
K ¼ qeK þ ð1� qÞK. Then according to the dual
form of Eq. (5),

hðKÞ ¼ minf
X
e2E

xeAðeÞ :

s:t: B:1b–B:1gg
¼ minf

X
e2E

xe½qeAðeÞ þ ð1� qÞAðeÞ� :

s:t: B:1b–B:1gg
¼ minfq

X
e2E

xe
eAðeÞ þ ð1� qÞ

X
e2E

xeAðeÞ :

s:t: B:1b–B:1gg

Let

hðeKÞ ¼minf
X
e2E

xe
eAðeÞ :

s:t: B:1b–B:1gg
hðKÞ ¼minf

X
e2E

xeAðeÞ :

s:t: B:1b–B:1gg

From linear programming theory, hðKÞP qhðeKÞþ
ð1� qÞhðKÞ obviously holds. Hence, h(K) is a con-
cave function on R. h
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